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Groups Generated by a Subset of Group Elements

Given a group G and a subset X of G, consider the set

〈X〉 = {gn1
1 · · · g

nk
k | k ≥ 0, ni ∈ Z, and gi ∈ X}.

Proposition 1. We have that 〈X〉 is a subgroup of G.

Proof. Given that k = 0, we have that gn1
1 · · · g

nk
k = eG by definition of the empty product. Conse-

quently, the set 〈X〉 is nonempty. By the one-step subgroup test, it suffices to prove that if g and

h are in 〈X〉, then gh−1 is in 〈X〉. We leave it to the reader to establish this.

We refer to the subset 〈X〉 of G as the subgroup of G generated by X; the elements of X are said

to be the generators of 〈X〉. Given that |X| is finite, we say that 〈X〉 is finitely generated.

Remark 1. Every finite group G = {eG, g1, . . . , gn} is finitely generated by eG, g1, . . . , gn.

Proposition 2. We have that 〈X〉 =
⋂
H∈C H, where C = {H ≤ G | X ⊆ H} is the collection of

all subgroups H of G that contain the set X.

Proof. Consider a subgroup H of G with X ⊆ H. Given any element gn1
1 · · · g

nk
k of 〈X〉, it follows

that gn1
1 · · · g

nk
k is in H by hypothesis that H is a subgroup of G that contains X. Certainly, this

argument holds for all subgroups H of G with X ⊆ H, hence we have that 〈X〉 ⊆
⋂
H∈C H.

Conversely, observe that 〈X〉 is a subgroup of G that contains X. Explicitly, by Proposition 1,

we have that 〈X〉 is a subgroup of G, and for each element g in X, we have that g = gn1
1 · · · g

nk
k for

some integer k ≥ 1, where g1 = g, n1 = 1, and ni = 0 for all 2 ≤ i ≤ k. Consequently, we have that⋂
H∈C H = 〈X〉

⋂
H∈C H ⊆ 〈X〉. We conclude that 〈X〉 =

⋂
H∈C H.

Given a finitely generated group G with set of generators X, we refer to a relation among the

generators of G as an equation involving the elements of X ∪ {eG}. We are already familiar with

some relations on G. Given an element g of finite order, we have the relation gord(g) = eG. Given an

element g in the center Z(G) of G (if it is nontrivial) and any element h of G, we have the relation

gh = hg or g−1h−1gh = eG. Further, if we assume that every relation among the generators of G

can be deduced from the finitely many relations R1, . . . ,Rn of the elements of X ∪ {eG}, then we

refer to the object G = 〈X | R1, . . . ,Rn〉 as a (finite) presentation of the group G.
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Example 1. Consider the group G presented by G = 〈r, s | ord(r) = 3, ord(s) = 2, and srs = r−1〉.
Considering that ord(r) = 3 and ord(s) = 2, the elements of G are given by eG, r, r

2, s, rs, and r2s.

Of course, one might naturally wonder why these are all of the elements of G. Let us prove this.

By definition, every element of G is of the form risj for some integers i and j. By hypothesis

that ord(r) = 3, every element of G is of the form sj, rsj, and r2sj for some integer j. Likewise, by

hypothesis that ord(s) = 2, it follows that eG, s, r, rs, r
2, and r2s are all possible elements of G.

Example 2. Certainly, the number of relations can be zero, i.e., the set of relations is ∅. Consider

the group presented by G = 〈g | ∅〉. One can easily verify that the map ϕ : G → Z defined by

ϕ(gk) = k is a group isomorphism, hence up to isomorphism, the unique group with this presentation

is Z.

Example 3. Construct a group presentation for the direct product Z× Z.

The Commutator Subgroup

Until now, we have only studied abelian groups; however, non-abelian groups exist.

Proposition 3. G = 〈r, s | ord(r) = 3, ord(s) = 2, and srs = r−1〉 is a non-abelian group.

Proof. On the contrary, we will assume that rs = sr. We have therefore that srs = s2r = r. On the

other hand, we have that srs = r−1 so that r = r−1 and r2 = eG, contradicting that ord(r) = 3.

Consequently, given a non-abelian group G, we might wish to quantify just “how far” G is from

being abelian. Considering that G is non-abelian, we must have that |G| ≥ 6, hence there exist

elements g and h of G such that gh 6= hg. Consider the element [g, h] = g−1h−1gh of G. We refer to

[g, h] as the commutator of g and h. Given nonempty subsets X and Y of G, we define the group

[X, Y ] = 〈[x, y] | x ∈ X and y ∈ Y 〉

generated by all the commutators of an element in X and an element in Y. Ultimately, we may

define the commutator subgroup [G,G] = 〈[g, h] | g, h ∈ G〉 of G.

Proposition 4. Consider a group G and a subgroup H of G.

(i.) We have that gh = hg[g, h]. Particularly, we have that gh = hg if and only if [g, h] = eG.

(ii.) We have that H E G if and only if [H,G] ≤ H.

(iii.) [G,G] is a normal subgroup of G.

(iv.) G/[G,G] is abelian.

(v.) Given that H E G and G/H is abelian, we must have [G,G] ≤ H. Conversely, if [G,G] ≤ H,

then H E G and G/H is abelian. Put another way, G/[G,G] is the largest abelian quotient

of G; thus, the larger [G,G] is (with respect to inclusion), the “less abelian” G is.
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(vi.) Every group homomorphism ϕ : G → A from G into an abelian group A “factors through”

the commutator subgroup of G, i.e., [G,G] ≤ kerϕ, and there exists a group homomorphism

ψ : G/[G,G] → A such that ϕ = ψ ◦ π, where π : G → G/[G,G] is the natural surjection.

Put another way, the following diagram exists and is commutative (i.e., ϕ = ψ ◦ π).

G G/[G,G]

A

π

ϕ
ψ

Proof. (i.) By definition, we have that [g, h] = g−1h−1gh, from which it follows that g[g, h] = h−1gh

so that hg[g, h] = gh. Further, we have that gh = hg if and only if [g, h] = g−1h−1gh = eG.

(ii.) By definition, we have that H E G if and only if g−1Hg ⊆ H for all elements g in G.

Consequently, if H E G, then for any element [h, g] = h−1g−1hg of [H,G], we have that g−1hg is

in H so that [h, g] = h−1g−1hg is in H and [H,G] ≤ H. Conversely, if [H,G] ≤ H, then every

element [h, g] of [H,G] can be written as [h, g] = k for some element k of H. But this implies that

hk = h[h, g] = g−1hg is in H for all h in H and g in G, i.e., g−1Hg ⊆ H for all elements g in G.

(iii.) We must establish that g−1[G,G]g ⊆ [G,G] for all elements g in G. Consider an element

g of G and an element [h, k] of [G,G]. Observe that (g−1hg)−1 = g−1h−1g, hence we have that

g−1[h, k]g = g−1h−1k−1hkg = (g−1h−1g)(g−1k−1g)(g−1hg)(g−1kg) = [g−1hg, g−1kg]

is in [G,G]. We conclude therefore that g−1[G,G]g ⊆ [G,G] for all elements g in G.

(iv.) By part (iii.) above, we have that G/[G,G] is a group with respect to the operation of G.

Given any elements g[G,G] and h[G,G] of G/[G,G], we have therefore that

(g[G,G])−1(h[G,G])−1(g[G,G])(h[G,G]) = g−1h−1gh[G,G] = eG[G,G].

We conclude that (g[G,G])(h[G,G]) = (h[G,G])(g[G,G]) so that G/[G,G] is abelian.

(v.) Given that G/H is abelian, we have that (xH)(yH) = (yH)(xH) for all elements xH and

yH in G/H, from which it follows that x−1y−1xy is in H for all elements x and y of G. By definition

of [G,G], we conclude that [G,G] ≤ H. Conversely, if [G,G] ≤ H, then for any elements g in G and

h in H, we have that h−1g−1hg is in H, from which it follows that g−1hg is in H and g−1Hg ⊆ H

for all elements g in G. For any elements x and y of G, we have that x−1y−1xy is in H so that

eGH = x−1y−1xyH = (xH)−1(yH)−1(xH)(yH),

and we conclude as desired that (yH)(xH) = (xH)(yH) so that G/H is abelian.

(vi.) Given any element [g, h] = g−1h−1gh of [G,G], we have that

ϕ([g, h]) = ϕ(g−1h−1gh) = ϕ(g−1)ϕ(h−1)ϕ(g)ϕ(h) = ϕ(g)−1ϕ(g)ϕ(h)−1ϕ(h) = eA

by hypothesis that ϕ is a group homomorphism and A is abelian. We conclude therefore that

[G,G] ≤ kerϕ. Consider the map ψ : G/[G,G] → A defined by ψ(g[G,G]) = ϕ(g). Given that

g[G,G] = h[G,G], we have that h−1g[G,G] = eG[G,G] so that h−1g is in [G,G]. Considering that

[G,G] ≤ kerϕ, it follows that eA = ϕ(h−1g) = ϕ(h−1)ϕ(g) = ϕ(h)−1ϕ(g) so that ϕ(g) = ϕ(h),

hence ψ is well-defined. By hypothesis that ϕ is a group homomorphism, it follows that ψ is a

group homomorphism, and it is easy to verify that ϕ = ψ ◦ π. Our proof is complete.

3



Finitely Generated Abelian Groups

Consider the free abelian group of rank r given by the direct product Zr =
∏r

i=1 Z with

Z0 def
= {0}. Using additive notation, it follows that Z is finitely generated by 1, hence Zr is finitely

generated by the vectors ei whose jth entry is the Kronecker delta δij for each integer 1 ≤ j ≤ r.

Theorem 1. (The Fundamental Theorem of Finitely Generated Abelian Groups) Every finitely

generated abelian group G can be written uniquely as G ∼= Zr × Zn1 × Zn2 × · · · × Zn`
for some

integer r ≥ 0, where the integers ni ≥ 2 are the invariant factors of G that satisfy n1 | n2 | · · · | n`.

Ultimately, we will find that the Fundamental Theorem of Finitely Generated Abelian Groups is a

consequence of the more general and powerful fact known as the Fundamental Theorem of Finitely

Generated Modules over a Principal Ideal Domain, so for now, let us continue without proof.

Q2b, January 2018. Consider the abelian group G = Z× Z. Given nonzero integers a and b, let

H1 = 〈(a, 0)〉 and H2 = 〈(0, b)〉. Prove that we have G/(H1 ×H2) ∼= Z/〈gcd(a, b)〉 × Z/〈lcm(a, b)〉.
(Hint: use the fact that ab = gcd(a, b) lcm(a, b) for any pair of integers a and b.)

One of the most fundamental properties of finitely generated abelian groups is the following.

Proposition 5. Every subgroup of a finitely generated abelian group is finitely generated.

Proof. Consider a finitely generated abelian group G with a subgroup H. We proceed by induction

on the number n of generators of G. Given that n = 1, we have that G = 〈g〉 is cyclic. Considering

that every subgroup of a cyclic group is cyclic (and therefore finitely generated), the claim holds

for n = 1. We will assume inductively that the claim holds for some integer n ≥ 2.

Given that G = 〈g1, . . . , gn+1〉, consider the canonical projection π : G → G/〈gn+1〉 defined by

π(g) = g+ 〈gn+1〉. By hypothesis that G is a finitely generated abelian group, every element of g is

of the form m1g1 + · · ·+mn+1gn+1 for some integers mi, hence every element of G/〈gn+1〉 is of the

form m1g1 + · · ·+mngn+ 〈gn+1〉 so that G/〈gn+1〉 = 〈g1 + 〈gn+1〉, . . . , gn+ 〈gn+1〉〉. By our induction

hypothesis, every subgroup H/〈gn+1〉 of G/〈gn+1〉 is finitely generated. Explicitly, we may assume

that the elements h1, . . . , hk of H satisfy H/〈gn+1〉 = 〈h1 + 〈gn+1〉, . . . , hk + 〈gn+1〉〉. Considering

that every subgroup of a cyclic group is cyclic, it follows that H ∩〈gn+1〉 = 〈hk+1〉 for some element

hk+1 of H. We claim that H = 〈h1, . . . , hk+1〉. Given any element h of H, we have that

π(h) = m1h1 + · · ·+mkhk + 〈gn+1〉 = π(m1h1 + · · ·+mkhk)

for some element m1h1 + · · ·+mkhk of 〈h1, . . . , hk〉. But this implies that

π(h−m1h1 − · · · −mkhk) = 0 + 〈gn+1〉

so that h−m1h1 − · · · −mkhk is in 〈gn+1〉. Evidently, it is also in H (as it is a linear combination

of elements of H), hence it is in H ∩ 〈gn+1〉 = 〈hn+1〉 so that h−m1h1 − · · ·mkhk = mk+1hk+1 for

some integer mk+1. We conclude that h = m1h1 + · · ·+mk+1hk+1 so that H = 〈h1, . . . , hk+1〉.
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Smith Normal Form

Given positive integers m,n ≥ 1, consider the set Zm×n of m× n matrices with integer entries.

Proposition 6. We have that Zm×n is an abelian group with respect to matrix addition. Further,

there exists a map · : Z× Zm×n → Zm×n that sends (r, A) 7→ r · A with the properties that

(i.) r · (A+B) = r · A+ r ·B,

(ii.) (r + s) · A = r · A+ s · A,

(iii.) r · (s · A) = (rs) · A, and

(iv.) 1 · A = A

for all integers r and s and all matrices A and B in Zm×n.

Proof. Observe that the multiplication map Z× Zm×n → Zm×n that sends (r, A) 7→ rA works.

Consequently, we refer to Zm×n as a Z-module. We note that Z-modules are quite common.

Proposition 7. Every abelian group G can be viewed as a Z-module via the action r · g = gr.

Proof. Given any two elements g and h in G and any integers r and s, we have that

(i.) r · (gh) = (gh)r = grhr = (r · g)(r · h) by hypothesis that G is abelian;

(ii.) (r + s) · g = gr+s = grgs = (r · g)(s · g);

(iii.) r · (s · g) = r · (gs) = (gs)r = grs = (rs) · g; and

(iv.) 1 · g = g1 = g, as desired.

Later, we will define the notion of anR-module over any commutative ringR, and we will understand

an R-module as a generalization of a vector space; for now, we are ready for the main theorem.

Theorem 2. (The Smith Normal Form) Given a nonzero matrix A in Zm×n, there exists an invert-

ible matrix P in Zm×m and an invertible matrix Q in Zn×n such that

PAQ =



n1 0 0 · · · 0 0 0 · · · 0

0 n2 0 · · · 0 0 0 · · · 0

0 0 n3 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · n` 0 0 · · · 0

0 0 0 · · · 0 0 0 · · · 0

0 0 0 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 0


,

where the integers ni ≥ 1 are unique (up to sign) and satisfy n1 | n2 | n3 | · · · | n`. Further, one

can compute the integers ni by the recursive formula ni = di/di−1, where di is the greatest common

divisor of all i× i-minors of the matrix A and d0 is defined to be 1.
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Generally, the Smith Normal Form holds for any matrix with entries in a principal ideal domain,

e.g., the integers Z and any polynomial ring k[x], where k is a field (such as Q,R, or C). We shall

soon see that the Smith Normal Form functions as an incredibly powerful tool in linear algebra to

compute the Rational Canonical Form of a matrix over a field k or the Jordan Canonical Form of

a matrix over an algebraically closed field (often C). Let us investigate how this works.

Example 4. Compute the Smith Normal Form of the matrix xI − A given that

A =

1 0 1

0 1 0

1 1 1


to find the invariant factors, elementary divisors, and minimal and characteristic polynomials of A.

Quite generally, the minimal polynomial of a matrix A (or linear operator represented by A) is the

largest invariant factor of the matrix xI −A, and the characteristic polynomial of A is the product

of all of the invariant factors of A. Later, we will see that the invariant factors of A give rise to the

Rational Canonical Form of A, and the elementary divisors lead us to the Jordan Canonical Form.

Q3, January 2017. Consider the free abelian group Zn of rank n whose elements are row vectors.

Given a matrix A in Zr×n, let KA denote the subgroup of Zn generated by the rows of A.

(a.) Given a matrix B = PAQ, where P is an invertible r× r matrix over Z and Q is an invertible

n× n matrix over Z, prove that Zn/KA and Zn/KB are isomorphic as abelian groups.

(b.) Given that A =

(
4 −2 4

2 4 4

)
, express Z3/KA as a direct sum of cyclic groups.

Before we prove part (a.) (as it is rather nontrivial at first glance), we need a technical lemma.

Lemma 1. Given a group G with a normal subgroup K and a group H, if there exists a group

isomorphism ϕ : G→ H, then ϕ(K) is a normal subgroup of H and G/K ∼= H/ϕ(K).

Proof. Given any element h of H, we have that h = ϕ(g) for some element g in G. Consequently, it

follows that hϕ(K)h−1 = ϕ(g)ϕ(K)ϕ(g)−1 = ϕ(gKg−1) = ϕ(K) so that ϕ(K) is normal in H.

Consider the group homomorphism ψ : G→ H/ϕ(K) defined by ψ(g) = ϕ(g)ϕ(K). By hypoth-

esis that ϕ is surjective, for every element g of G, there exists a unique element g′ of G such that

g = ϕ(g′). Consequently, we have that gϕ(K) = ϕ(g′)ϕ(K) = ψ(g′) so that ψ is surjective. Further,

we have that g is in kerψ if and only if ϕ(g)ϕ(K) = ψ(g) = eGϕ(K) if and only if ϕ(g) is in ϕ(K)

if and only if ϕ(g) = ϕ(k) for some k in K if and only if g = k by assumption that ϕ is injective.

We conclude that kerψ = K, hence G/K ∼= H/ϕ(K) by the First Isomorphism Theorem.

Corollary 1. Given a group G with a normal subgroup K, if there exists a group isomorphism

ϕ : G→ G, then G/K ∼= G/ϕ(K).

Proof. (a.) Consider the ith row vi = 〈ai1, . . . , ain〉 of the matrix A. By definition, we have that

KA = {m1v1 + · · ·mrvr | mi ∈ Z}.
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Crucially, we make the following observation: for any vector 〈m1, . . . ,mr〉 in Zr, we have that

〈m1, . . . ,mr〉A = m1v1 + · · ·+mrvr.

Consequently, every element of KA is of the form 〈m1, . . . ,mr〉A for some vector m = 〈m1, . . . ,mr〉
of Zr. Put another way, we have that KA = ZrA. By the same argument applied to B = PAQ, we

have that KB = ZrB = ZrPAQ. By hypothesis that P is invertible, it follows that the abelian group

homomorphism ρ : Zr → Zr defined by ρ(v) = vP is an isomorphism with inverse ρ−1(vP ) = v.

Likewise, the abelian group homomorphism σ : Zn → Zn defined by σ(v) = vQ is an isomorphism

with inverse σ−1(vQ) = v. We have therefore that σ : Zn → ZnQ is a group isomorphism with

Zn = σ(Zn) = ZnQ and σ(ZrPA) = ZrPAQ, from which it follows by Lemma 1 that Zn/ZrPA ∼=
ZnQ/(ZrPAQ). We have also that ρ : Zr → Zr is a group isomorphism such that Zr = ρ(Zr) = ZrP,
from which it follows that ZrPA = ZrA = KA. Ultimately, we conclude as desired that

Zn

KB

=
Zn

ZrB
=

Zn

ZrPAQ
=

ZnQ
ZrPAQ

∼=
Zn

ZrPA
=

Zn

ZrA
=

Zn

KA

.

Proof. (Theorem 1) Given an abelian group G with generators g1, . . . , gn, every element of G can

be written as m1g1 + · · · + mngn for some integers mi. Consider the map ϕ : Zn → G defined by

ϕ(〈m1, . . . ,mn〉) = m1g1 + · · ·+mngn. One can easily verify that ϕ is a surjective group homomor-

phism, hence by the First Isomorphism Theorem, we have that G ∼= Zn/ kerϕ. By Proposition 5, it

follows that kerϕ is finitely generated, i.e., kerϕ = 〈〈a11, . . . , a1n〉, . . . , 〈ar1, . . . , arn〉〉 for some inte-

gers aij with r ≤ n. Consequently, the elements of kerϕ are k1〈a11, . . . , a1n〉+ · · ·+ kr〈ar1, . . . , arn〉
for some integers ki. Put another way, we have that kerϕ = ZrA = ψ(Zr), where A is the matrix

whose ith row is 〈ai1, . . . , ain〉 and ψ : Zr → Zn is the map defined by ψ(v) = vA (cf. the proof of

part (a.) of Q3, January 2017). Given that ϕ is injective, we have that G ∼= Zn. Otherwise, A is

a nonzero matrix in Zr×n, and by Theorem 2, there exists an invertible matrix P in Zr×r and an

invertible matrix Q in Zn×n such that PAQ is diagonal with ` nonzero entries n1 | n2 | n3 | · · · | n`
followed by n− ` zeros along the diagonal. By part (a.) of Q3, January 2017, we conclude that

G ∼=
Zn

kerϕ
=

Zn

ZrA
∼=

Zn

ZrPAQ

=
Zn

〈n1〉 × 〈n2〉 × 〈n3〉 × · · · × 〈n`〉 × 〈0〉 × · · · × 〈0〉︸ ︷︷ ︸
n−` factors

∼=
Z
n1Z
× Z
n2Z
× Z
n3Z
× · · · × Z

n`Z
× Z× · · · × Z︸ ︷︷ ︸

n−` factors

∼= Zn−` × Zn1 × Zn2 × Zn3 × · · · × Zn`
.

By the remark immediately following the statement of Theorem 2, the Fundamental Theorem of

Finitely Generated Modules over a Principal Ideal Domain (PID) follows by a similar argument

applied to a PID R. Consequently, Theorem 1 follows from Theorem 2 by setting R = Z.
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Before we conclude this note, let us discuss the algorithm for computing the invertible matrices

P and Q such that PAQ is in Smith Normal Form, as guaranteed by Theorem 2. Observe that any

matrix A in Zm×n determines a Z-linear transformation Zn → Zm whose image is generated by the

columns of A. Particularly, we have that AZn = 〈v1, v2, . . . , vn〉, where vi is the ith column vector of

A and the action of A is left-multiplication on an n×1 column vector. Put another way, Zm/AZn is

the cokernel of the map Zn → Zm that is left-multiplication by A. Consequently, the Smith Normal

Form of A induces an isomorphism between Zm/AZn and Zm/PAQZn. Because PAQ is a diagonal

matrix by construction, the latter group is a direct product of cyclic groups.

We obtain the invertible matrices P and Q guaranteed by Theorem 2 as follows.

Proposition 8. (Finding the Change-of-Basis Matrices for the Smith Normal Form) Let A be a

nonzero m× n matrix over Z (or any other principal ideal domain). The invertible m×m matrix

P and invertible n× n matrix Q such that PAQ is in Smith Normal Form can be found as follows.

(i.) Compute the Smith Normal Form of A by using elementary row and column operations to

obtain a diagonal matrix with positive integers n1 | n2 | · · · | n` along the diagonal. Be sure

to keep track of all row and column operations Ri ↔ Rj and αRi +Rj 7→ Rj.

(ii.) Use the elementary row operations from the previous step on the m ×m identity matrix. If

performed correctly, the resulting matrix is the invertible m×m matrix P.

(iii.) Use the elementary column operations from the first step on the n × n identity matrix. If

performed correctly, the resulting matrix is the invertible n× n matrix Q.

Considering that Q is an invertible n× n matrix, it follows that the columns of Q form a basis

for Zn. Likewise, the columns of P−1 form a basis for Zm. Consequently, the map that sends the

ith column of P−1 to the generator of the ith cyclic group Z/niZ of Zm/PAQZn is surjective.

Even more, we have that PAQZn = PAZn so that P−1(PAQ)Zn = AZn, hence the kernel of this

map is AZn. By the First Isomorphism Theorem, we conclude that P−1 induces an isomorphism

Zm/AZn ∼= Zm/PAQZn, the latter of which is a direct product of cyclic groups by construction.

Using Gaussian elimination on P, one can obtain the matrix P−1. One can alternatively begin

with the standard basis e1, . . . , em of Zm. Using the same order as the elementary row operations

were performed, employ the inverse operation to the columns of the m×m matrix
(
e1 · · · em

)
.

Explicitly, if the row operation Ri ↔ Rj was performed, then perform the column operation Ci ↔
Cj; if the row operation Ri + αRj 7→ Ri was performed, then perform the column operations

Cj − αCi 7→ Cj. If performed correctly, the resulting matrix is the invertible m×m matrix P−1.

We conclude with the following example to illustrate the above procedure.

Example 5. Find an explicit isomorphism between a direct product of cyclic groups and

G =
Z× Z× Z× Z

〈(0, 0, 3, 1), (0, 6, 0, 0), (0, 1, 0, 1)〉
.

Solution. By the preceding discussion, it suffices to find the Smith Normal Form of some 4 × n

matrix A such that G is the cokernel of the map that is left-multiplication AZn. For instance, one
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can easily verify that G is the cokernel of the map Z3 → Z4 that is left-multiplication by

A =


0 0 0

0 6 1

3 0 0

1 0 1

.
Using elementary row and column operations, we convert A into a diagonal matrix whose positive

entries are n1 | n2 | · · · | n`. One way to accomplish this is to use (1.) R1 ↔ R4, (2.) R3−3R1 7→ R3,

(3.) C3 − C1 7→ C3, (4.) R3 + 3R2 7→ R3, (5.) C2 − 6C3 7→ C2, and (6.) C2 ↔ C3 to obtain

A
(1.)∼


1 0 1

0 6 1

3 0 0

0 0 0

 (2.)∼


1 0 1

0 6 1

0 0 −3

0 0 0

 (3.)∼


1 0 0

0 6 1

0 0 −3

0 0 0

 (4.)∼


1 0 0

0 6 1

0 18 0

0 0 0

 (5.)∼


1 0 0

0 0 1

0 18 0

0 0 0

 (6.)∼


1 0 0

0 1 0

0 0 18

0 0 0

.
By performing these elementary row operations on the 4× 4 identity matrix, we find that

P =


0 0 0 1

0 1 0 0

0 3 1 −3

1 0 0 0

.
By performing these elementary column operations on the 3× 3 identity matrix, we find that

Q =

1 −1 6

0 0 1

0 1 −6

.
We find P−1 by employing the inverse of the row operations on the columns of the 4 × 4 identity

matrix. Explicitly, if we used Ri +αRj 7→ Ri, then use Cj−αCi 7→ Cj; swapping is its own inverse.

Using the notation (i.) to indicate the inverse operation of the ith step above, we find that[
e1 e2 e3 e4

] (1.)−−→
[
e4 e2 e3 e1

] (2.)−−→
[
3e3 + e4 e2 e3 e1

] (4.)−−→
[
3e3 + e4 e2 − 3e3 e3 e1

]
,

where ei is the usual standard basis column vector. Put another way, we have that

P−1 =


0 0 0 1

0 1 0 0

3 −3 1 0

1 0 0 0

.
Ultimately, the map Z4 → G defined by (0, 0, 3, 1)t 7→ 0, (0, 1,−3, 0)t 7→ 0, (0, 0, 1, 0)t 7→ 1, and

(1, 0, 0, 0)t 7→ 1 induces a surjection Z4 → Z/18Z×Z with kernel 〈(0, 0, 3, 1), (0, 6, 0, 0), (0, 1, 0, 1)〉.
By the First Isomorphism Theorem, we conclude that G ∼= Z/18Z× Z. �

Q1, August 2012. Consider the (finitely generated) abelian group G = Z × Z30 under addition

with subgroup H = 〈(5, 3)〉. Describe with proof the factor group G/H.
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Q2b, January 2018 (Revisited). Use the Smith Normal Form to prove that

Z× Z
〈(a, 0), (0, b)〉

∼=
Z

〈gcd(a, b)〉
× Z
〈lcm(a, b)〉

.

Q1, August 2021. Find an explicit isomorphism between the quotient group (Z×Z)/〈(4, 1), (6, 3)〉
and a direct product of cyclic groups.
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